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INTRODUCTION 
IN MANY practical heat-transfer applications, the surface 
from which heat is being transferred is non-isothermal. 
However, most heat-transfer correlations available, due 
either to analysis or experiment, strictly apply for the 
uniform wall-temperature condition. Theoretical studies 
of heat transfer from non-isothermal surfaces in laminar 
free convection [l-3] for fluids with Prandtl numbers 
near unity, i.e. gases, have shown that the application 
of heat-transfer coefficients determined for uniform wall 
temperature conditions to variable wall-temperature 
situations can lead to significant errors in heat-transfer 
calculations. The purpose of this investigation is to study 
the non-isothermal wall problem in laminar free convec- 
tion for low Prandtl number fluids. Axisymmetric flow 
about a vertical right circular cone with a power-law 
wall-temperature distribution was chosen for study. As 
shown in [3], the boundary-layer equations admit to a 
similarity transformation for this situation. Numerical 
solutions of the transformed boundary-layer equations 
have been obtained for Prandtl numbers typical of gases 
and liquid metals as well as for an inviscid fluid. Heat- 
transfer results for the isothermal cone have been reported 
[3-51 for gases. 

FORMULATION AND SOLUTION 
The boundary-layer equations are given and discussed 

in [3] where it was shown that a similarity transformation 
exists for wall temperature distributions 

The same notation is used as in reference 3. It is ad- 
vantageous to utilize slightly altered variables from those 
in [3] for low Prandtl number fluid heat-transfer studies. 
Thus, introducing 5 and f(n related to the corresponding 
variables T and F(I)) in [3] by 

1 = d(Pr)T, f(l) = l/(Pr)F(T) (1) 

the transformed boundary-layer equaticns and boundary 
conditions {equations (33), (34), and (15) of [3]} become 

- 
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,pr)f”‘+ (y)fl”- (+jf2+0=0 (2) 

8” + 
( 1 
‘+1’8’_-nf’e=O (3) 

with 
f’=f=O, e=1.0, I=0 

I’ _ 0, 9 = 0, 5= co. > 
(4) 

The primes in equations (2-4) denote differentiation 
with respect to 5. In this form the contribution of the 
term representing viscous forces (f”‘) in equation (2) 
becomes small as Prandtl number decreases. Thus, as the 
Prandtl number approaches zero, the fluid behavior 
approaches that of an inviscid fluid with the buoyancy 
force just balanced by the inertia force. For Pr = 0, 
that is, free convection in an inviscid fluid, the require- 
ment of no slip at the wall [f’(O) = 0] is no longer im- 
posed. Le. Fevre 163 obtained a result analogous to 
equation (2) with Pr = 0 in an investigation of the 
limiting value of heat transfer for a vertical isothermal 
plate. 

Numerical solutions of equations (2) and (3) with 
the bcundary conditions (4) have been obtained for 
Prandtl numbers of 0901, 0903, 0.01, 0.03, 0.1, 0.7, and 
1.0 for the following values of n: 8, 4, 2, 1, 0.2, 0, -0.5. 
Solutions for an inviscid fluid (Pr = 0) for identical n 
values have also been determined. Table 1 lists the initial 
valuesf”(0) and 0’(O) for the solutions obtained. These 
initial values are related to the friction drag and heat 
transfer. 

RESULTS 
Local Nusselt number 

introducing the altered variable of equation (1) into 
equation (43) of reference 3 results in the following 
expression for the local Nusselt number 

Nux 
(Grx Pr2)i 

= -4(O) 

Values of 0’(O) are given in Table 1 and were used to 
construct Figs. 1 and 2. In Fig. 1, this heat-transfer 
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Table 1. Dimensionless velocity and temperature derivatives at the wall 

Pri 1, 
n ‘\I --- _ 

-0.5 
0 
0.2 
1.0 
2.0 
4.0 
8.0 

0 

-f”(O) -F(O) f“‘(O) 

OIxIl 

-W(O) 

0.003 0.01 

f”(O) -B’(O) f”(O) -V(O) 

47.99 0.5920 56.03 0.5863 30.51 0.5780 15.36 0.5667 
13.17 0.7916 47.96 0.7803 26.45 0.7669 13.55 0.7475 
9.011 0.8567 45.52 0.8423 25.29 0.8280 13.01 0.8058 
3.251 1.063 39.37 1.037 22.07 1.020 11.48 0.9886 
1.728 1.245 34.98 I.210 19.70 1.189 10.31 1.149 
1.032 1.491 30.23 1.444 17208 1.416 8.987 1.364 
0.7236 1.792 25.73 1.733 14.56 1.696 7.684 1.629 

\ Pr’ 

1’ 

0.03 0.1 0.7 1.0 

n \I- f”(O) -8’(O) f’“(O) -B”(O) f”(0) -8’(O) f”(0) --K(O) 

-0.5 
0 
0.2 
1.0 I 
2.0 i 
4.0 
8.0 / 

8.037 0.5493 3.830 0.5182 1.071 0.4304 0.8408 0.4094 
7.185 0.7185 3.466 0.6683 0.9796 0.5392 0.7694 0.5104 
6,928 0.7726 3.353 0.7159 0.9513 0.5730 0.7475 0.5148 
6,174 0.9415 3.019 0.8663 0.8663 0.6777 0.6815 06389 
5.582 1.089 2.149 0.9919 0.7962 0.7693 0.6270 0.7240 
4.892 1.287 2.425 1.165 0.7096 0.8945 0.5596 0.8406 
4.197 1.533 2.091 1.381 0.6172 I.053 0.4872 0.9889 

FIG. 1. Effect of Prandtl number on heat transfer for various n values. 
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FIG. 2. Effect of n on heat transfer at low Prandtl number. 

parameter is shown for the Prandtl number range 
1O-3 to 1.0 with n taking on values from -0.5 to 8. 
The inviscid fluid results are given along the ordinate at 
the lowest value of Prandtl number in the figure. These 
solutions provide reasonably accurate local Nusselt 
number values for liquid metals. For example, at 
Pr = 0.03, the inviscid fluid results are 10 and 17 per cent 
higher than the corresponding boundary-layer results 
for n = 0 and 8 respectively. These discrepancies reduce 
to 3 and 6 per cent at Pr = 0.003. In Fig. 2 emphasis is 
given to the dependence of the dimensionless local heat- 
transfer relation of equation (5) on n with Prandtl 
number as a parameter. For positive and increasing 
values of n, the local Nusselt number expression shows 
substantial increases above that of the isothermal wall at 
a specified Prandtl number with the extent of this 
difference increasing as the Prandtl number decreases. 
Also apparent from this figure is the zero value for heat 
transfer when n = -715 independent of the value of 
Prandtl number. This result may be verified by inspection 
of equation (3). 

It is of considerable practical interest to inquire as to 
how well the local heat flux for the non-isothermal wall 
condition can be predicted by the local application of 
isothermal wall results. In situations where heat-transfer 
coefficients for variable wall temperature are not avail- 
able, calculations of local wall heat flux, in all likelihood, 

would proceed on the basis of heat-transfer coefficients 
determined for isothermal wall conditions and the local 
wall to ambient temperature difference. Denoting results . 
obtamed m this manner as qiso, the ratio of the local 
heat-flux value for the variable wall temperature situation 
qvar to qiso is given by 

qvxr I- w-01 R 

qiso [-f(O)1 n = 0 

where [-19’(0)]~ represents the dimensionless temperature 
derivative at 1 = 0 for a particular n and [-0’(0&0 
denotes a similar derivative for the isothermal case. 
The results obtained in this manner are shown in Fig. 3 
for representative values of Prandtl number from 
0 to 1.0. Again, in agreement with other investigators, 
large errors in local heat flux predictions may be incurred 
by the local application of heat-transfer coefficients 
determined for isothermal wall conditions for fluids 
with Prandtl number near unity; i.e. for gases. The use 
of such procedures for fluids in the liquid metal range is 
even less satisfactory. 

Mean Nusselt number 
Introducing the variables of equation (1) into equation 

(48) of reference 3 gives 
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FIG. 3. Ratio of local heat fluxes and overall heat transfer. 

NUL ~ = _8._ [-fq())] 

(GrLPr2)t 5n + 7 (7) 

for n > -7/5. According to equations (6) and (7) the 
ordinates of Figs. 1 and 2 may also be interpreted as 

Also of interest is the accuracy to which total heat 
transfer for variable wall temperature conditions may be 
predicted by the application of overall heat-transfer 
coefficients determined for the isothermal wall. Letting 
Qis, denote the total heat transfer evaluated on the basis 
of an isothermal wall heat-transfer coefficient, we may 
write 

where A is the cone lateral surface area and T, - Ta 
is some characteristic temperature difference for the 
variable wall temperature situation which is also used 
for the evaluation of GrL. With the definition of h from 
equation (47) of reference 3, the ratio of the total heat 
transfer for variable wall temperature QV,, to that given 
by equation (8) is 

where 

(10) 

Thus, the ordinate of Fig. 3 may also be interpreted as 

Q V&T 5n + 7 1 
~ __ a)’ Qi,, ( 1 7 

The choice of a characteristic temperature difference, 
Z - Tm, for the variable temperature wall conditions 
is quite arbitrary. One choice which comes to mind 
because of the definition of h is to use the temperature 
difference at X = L, that is Te - Tm = T, - r,. For 
this selection +(n) = 1 and the total heat transfer cal- 
culated on the basis of equation (8) is overestimated 
for n > 0 and underestimated for n < 0. As an example 
of magnitude of this error, the heat transfer is only 
sixty-three per cent of that predicted by Qiso for n = 2 
and Prandtl number 0.01. Even larger inaccuracies occur 
for larger n values and higher Prandtl numbers. 

A second choice for the characteristic temperature 
difference suggested by simplicity is the mean surface 
temperature difference. For this selection d(n) = 
(n + l)e+i and thus heat transfer is underestimated for 
n > 0 and overestimated for n < 0. For the same vaiues 
of n and Prandtl number discussed above, the total heat 
transfer is almost 2.5 times that calculated by equation 
(8). Again, the errors increase with increasing departure 
from isothermal wall temperature conditions. No simple 
method of choosing the characteristic temperature 
difference has been found which will lead to accurate 
predictions of total heat-transfer rates for variable wall 
temperature conditions by the use of average heat- 
transfer coefficients for the isothermal wall. 
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